Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.

Identifieur interne : 002495 ( Main/Exploration ); précédent : 002494; suivant : 002496

Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.

Auteurs : Robert E. Carey [États-Unis] ; Nathan K. Hepler ; Daniel J. Cosgrove

Source :

RBID : pubmed:23286898

Descripteurs français

English descriptors

Abstract

BACKGROUND

Expansins are plant cell wall loosening proteins encoded by a large superfamily of genes, consisting of four families named EXPA, EXPB, EXLA, and EXLB. The evolution of the expansin superfamily is well understood in angiosperms, thanks to synteny-based evolutionary studies of the gene superfamily in Arabidopsis, rice, and Populus. Analysis of the expansin superfamily in the moss Physcomitrella patens revealed a superfamily without EXLA or EXLB genes that has evolved considerably and independently of angiosperm expansins. The sequencing of the Selaginella moellendorffii genome has allowed us to extend these analyses into an early diverging vascular plant.

RESULTS

The expansin superfamily in Selaginella moellendorffii has now been assembled from genomic scaffolds. A smaller (and less diverse) superfamily is revealed, consistent with studies of other gene families in Selaginella. Selaginella has an expansin superfamily, which, like Physcomitrella, lacks EXLA or EXLB genes, but does contain two EXPA genes that are related to a particular Arabidopsis-rice clade involved in root hair development.

CONCLUSIONS

From sequence-based phylogenetic analysis, most Selaginella expansins lie outside the Arabidopsis-rice clades, leading us to estimate the minimum number of expansins present in the last common ancestor of Selaginella and angiosperms at 2 EXPA genes and 1 EXPB gene. These results confirm Selaginella as an important intermediary between bryophytes and angiosperms.


DOI: 10.1186/1471-2229-13-4
PubMed: 23286898
PubMed Central: PMC3680112


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.</title>
<author>
<name sortKey="Carey, Robert E" sort="Carey, Robert E" uniqKey="Carey R" first="Robert E" last="Carey">Robert E. Carey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Lebanon Valley College, 101 N, College Av., Annville, PA 17003, USA. rcarey@lvc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Lebanon Valley College, 101 N, College Av., Annville, PA 17003</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hepler, Nathan K" sort="Hepler, Nathan K" uniqKey="Hepler N" first="Nathan K" last="Hepler">Nathan K. Hepler</name>
</author>
<author>
<name sortKey="Cosgrove, Daniel J" sort="Cosgrove, Daniel J" uniqKey="Cosgrove D" first="Daniel J" last="Cosgrove">Daniel J. Cosgrove</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23286898</idno>
<idno type="pmid">23286898</idno>
<idno type="doi">10.1186/1471-2229-13-4</idno>
<idno type="pmc">PMC3680112</idno>
<idno type="wicri:Area/Main/Corpus">002746</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002746</idno>
<idno type="wicri:Area/Main/Curation">002746</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002746</idno>
<idno type="wicri:Area/Main/Exploration">002746</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.</title>
<author>
<name sortKey="Carey, Robert E" sort="Carey, Robert E" uniqKey="Carey R" first="Robert E" last="Carey">Robert E. Carey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Lebanon Valley College, 101 N, College Av., Annville, PA 17003, USA. rcarey@lvc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Lebanon Valley College, 101 N, College Av., Annville, PA 17003</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hepler, Nathan K" sort="Hepler, Nathan K" uniqKey="Hepler N" first="Nathan K" last="Hepler">Nathan K. Hepler</name>
</author>
<author>
<name sortKey="Cosgrove, Daniel J" sort="Cosgrove, Daniel J" uniqKey="Cosgrove D" first="Daniel J" last="Cosgrove">Daniel J. Cosgrove</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bryophyta (genetics)</term>
<term>Bryophyta (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (genetics)</term>
<term>Magnoliopsida (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Selaginellaceae (classification)</term>
<term>Selaginellaceae (genetics)</term>
<term>Selaginellaceae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bryophyta (génétique)</term>
<term>Bryophyta (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (génétique)</term>
<term>Magnoliopsida (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Selaginellaceae (classification)</term>
<term>Selaginellaceae (génétique)</term>
<term>Selaginellaceae (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Magnoliopsida</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bryophyta</term>
<term>Magnoliopsida</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bryophyta</term>
<term>Magnoliopsida</term>
<term>Protéines végétales</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bryophyta</term>
<term>Magnoliopsida</term>
<term>Plant Proteins</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bryophyta</term>
<term>Magnoliopsida</term>
<term>Protéines végétales</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Expansins are plant cell wall loosening proteins encoded by a large superfamily of genes, consisting of four families named EXPA, EXPB, EXLA, and EXLB. The evolution of the expansin superfamily is well understood in angiosperms, thanks to synteny-based evolutionary studies of the gene superfamily in Arabidopsis, rice, and Populus. Analysis of the expansin superfamily in the moss Physcomitrella patens revealed a superfamily without EXLA or EXLB genes that has evolved considerably and independently of angiosperm expansins. The sequencing of the Selaginella moellendorffii genome has allowed us to extend these analyses into an early diverging vascular plant.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The expansin superfamily in Selaginella moellendorffii has now been assembled from genomic scaffolds. A smaller (and less diverse) superfamily is revealed, consistent with studies of other gene families in Selaginella. Selaginella has an expansin superfamily, which, like Physcomitrella, lacks EXLA or EXLB genes, but does contain two EXPA genes that are related to a particular Arabidopsis-rice clade involved in root hair development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>From sequence-based phylogenetic analysis, most Selaginella expansins lie outside the Arabidopsis-rice clades, leading us to estimate the minimum number of expansins present in the last common ancestor of Selaginella and angiosperms at 2 EXPA genes and 1 EXPB gene. These results confirm Selaginella as an important intermediary between bryophytes and angiosperms.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23286898</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.</ArticleTitle>
<Pagination>
<MedlinePgn>4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-13-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Expansins are plant cell wall loosening proteins encoded by a large superfamily of genes, consisting of four families named EXPA, EXPB, EXLA, and EXLB. The evolution of the expansin superfamily is well understood in angiosperms, thanks to synteny-based evolutionary studies of the gene superfamily in Arabidopsis, rice, and Populus. Analysis of the expansin superfamily in the moss Physcomitrella patens revealed a superfamily without EXLA or EXLB genes that has evolved considerably and independently of angiosperm expansins. The sequencing of the Selaginella moellendorffii genome has allowed us to extend these analyses into an early diverging vascular plant.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The expansin superfamily in Selaginella moellendorffii has now been assembled from genomic scaffolds. A smaller (and less diverse) superfamily is revealed, consistent with studies of other gene families in Selaginella. Selaginella has an expansin superfamily, which, like Physcomitrella, lacks EXLA or EXLB genes, but does contain two EXPA genes that are related to a particular Arabidopsis-rice clade involved in root hair development.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">From sequence-based phylogenetic analysis, most Selaginella expansins lie outside the Arabidopsis-rice clades, leading us to estimate the minimum number of expansins present in the last common ancestor of Selaginella and angiosperms at 2 EXPA genes and 1 EXPB gene. These results confirm Selaginella as an important intermediary between bryophytes and angiosperms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carey</LastName>
<ForeName>Robert E</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lebanon Valley College, 101 N, College Av., Annville, PA 17003, USA. rcarey@lvc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hepler</LastName>
<ForeName>Nathan K</ForeName>
<Initials>NK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cosgrove</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C095825">expansin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044002" MajorTopicYN="N">Bryophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032503" MajorTopicYN="N">Selaginellaceae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23286898</ArticleId>
<ArticleId IdType="pii">1471-2229-13-4</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-13-4</ArticleId>
<ArticleId IdType="pmc">PMC3680112</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):854-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Nov;44(3):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Feb 15;24(4):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Sep;9(9):1661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9338967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Mar;103(5):749-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Jun;99(6):1131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Nov;4:1425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11538167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):985-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Feb 20;3:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010;11:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 20;332(6032):960-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2310-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2012 Jul;79:87-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jan;39(1):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11812-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Dec;14(12):3237-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sex Plant Reprod. 2009 Sep;22(3):141-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20033435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Jan;21(1):90-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2006 Jan;119(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3615-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19687127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cosgrove, Daniel J" sort="Cosgrove, Daniel J" uniqKey="Cosgrove D" first="Daniel J" last="Cosgrove">Daniel J. Cosgrove</name>
<name sortKey="Hepler, Nathan K" sort="Hepler, Nathan K" uniqKey="Hepler N" first="Nathan K" last="Hepler">Nathan K. Hepler</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Carey, Robert E" sort="Carey, Robert E" uniqKey="Carey R" first="Robert E" last="Carey">Robert E. Carey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23286898
   |texte=   Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23286898" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020